Physiologically-Regulated Expression Vectors for Gene Therapy
نویسندگان
چکیده
Gene-replacement gene therapy has been under development for a number of years. In spite of the large amount of research invested into developing gene therapy for the treatment of recessive genetic disorders only a limited number of patients world-wide have received the benefits. In addition, several high profile adverse events in gene therapy trials have lead to an increasing awareness of the challenges facing gene therapy treatments before they become established in the clinic. This has necessitated the development of novel advances in gene therapy vector design and delivery. This chapter will focus on the development of gene expression vectors incorporating native genomic regulatory elements that ensure transgene expression is physiologically relevant. Three main advances will be discussed here in detail; the use of whole genomic DNA loci to ensure physiologically-regulated transgene expression; development of viral vectors based on the herpes simplex virus type 1 for delivery of whole genomic DNA loci; and the development of genomic mini-gene vectors that contain native regulatory regions for the physiologically-regulated expression of cDNA mini-genes. The principal aim of gene-replacement gene therapy is to complement the loss of function of an endogenous gene by supplying an exogenous ‘working’ copy in trans. The conventional approach to this is to supply a wild-type cDNA copy of the gene in a small vector in which transgene expression is controlled by a strong heterologous promoter, such as the immediate early promoter of cytomegalovirus (pCMV). The advantage of this approach is that the vectors are easy to use, have high levels of transgene expression, and fit easily into most viral delivery systems such as lentivirus and adenovirus. However, expression from these vectors is characteristically short-term and wide-spread with no tissue specificity or temporal regulation. One alternative to heterologous expression vectors for gene therapy is to utilise native genomic DNA regulatory elements to ensure gene expression that is both spatially and temporally regulated. A highly effective means of achieving gene expression that is physiologically-regulated is through the use of whole genomic loci which contain all introns, exons and regulatory regions in the correct genomic context. Expression from whole genomic loci has been proven to recapitulate endogenous expression. In the context of gene therapy, delivery of whole genomic loci using bacterial artificial chromosomes (BAC) has been shown to be an effective means of complementing gene deficiencies. Delivery of BAC vectors carrying complete loci encoding, for example, the genes for the human low density lipoprotein receptor (LDLR), the Friedreich's ataxia (FRDA) frataxin protein (FXN),
منابع مشابه
نگاهی به ژن درمانی، پیشرفتهای اخیر و چشم انداز آینده
Human gene therapy has attracted increasing attention as a highly encouraging therapeutic approach to treat wide variety of diseases, other than genetically inherited and monogenic disorders. This approach entails the introduction and expression of a variety of nucleic acids into human target cells for therapeutic purposes. In this article, we review the history, highlights, recently progresses...
متن کاملHIV-Derived Lentiviral Vectors: Current Progress toward Gene Therapy and DNA Vaccination
Lentiviral vectors are promising gene delivery tools capable of transducing a variety of dividing and non-dividing cells, including pluripotent stem cells which are refractory for transduction by murine retroviruses. Although there is a growing debate on the safety of lentiviral vectors for gene transfer, in particular for those derived from human immunodeficiency viruses, type one (HIV-1) and ...
متن کاملGene Expression under F8 Promoter Driving In Mouse Hepatoma Cells: A Step towards Gene Therapy of Hemophilia
Background and Objectives: Significant progress has been made in treatment of hemophilia. Ex-vivo gene therapy is going popular due to the capability of this method in using isogenic cells for genetic manipulation and reintroducing them into same host after proliferation. Most gene therapy techniques use viral vectors, which usually harbor a strong and non-specific promoter (e...
متن کاملDelivery of the 135 kb human frataxin genomic DNA locus gives rise to different frataxin isoforms.
Friedreich's ataxia (FRDA) is the most common form of hereditary ataxia caused by recessive mutations in the FXN gene. Recent results have indicated the presence of different frataxin isoforms due to alternative gene expression mechanisms. Our previous studies demonstrated the advantages of using high-capacity herpes simplex virus type 1 (HSV-1) amplicon vectors containing the entire FXN genomi...
متن کاملBeta thalassemia gene therapy using lentiviral vectors
Recent years, allogeneic bone marrow transplantation (BMT) has proved to be the successful cure for patients with thalassemia major, however this is restricted due to limited matched-related donor. Its complications include chronic graft-versus-host disease in 5-8% of patients. So, a molecular approach, such as gene therapy for direct normal beta globin gene transmission, seems quite promising ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012